

Übersetzt ins Deutsche durch den **Kunststoffrohrverband e.V**. Fachverband der Kunststoffrohr-Industrie Kennedyallee 1–5 53175 Bonn

European Communication Format – B2B

Environmental Product Declaration

Polyvinylchlorid (PVC-U) Vollwand Kanalrohrsystem

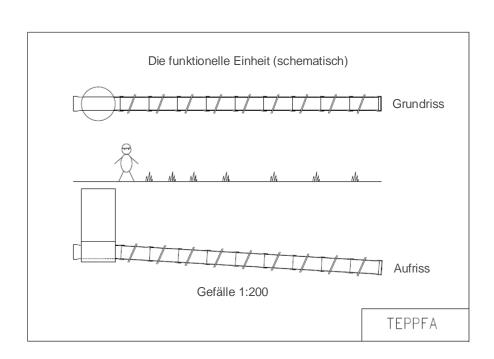
1 DEKLARATION ALLGEMEINER INFORMATION

Einleitung

Die Vereinigung der europäischen Kunststoffrohr- und Formstückproduzenten (TEPPFA) möchte einen tieferen Einblick in die umfassenden Umweltausauswirkungen gewinnen, die im Laufe des Lebenszyklus von bestimmten Rohrsystemanwendungen auftreten. Aus diesem Grund hat TEPPFA in Zusammenarbeit mit VITO, dem Flämischen Institut für technologische Forschung, ein Ökobilanz-Projekt durchgeführt. Die vorliegende Umweltproduktdeklaration (EPD) beleuchtet die verschiedenen Umweltaspekte, die mit PVC-U Vollwand Kanalrohrsystemen einhergehen, von der Gewinnung der primären Rohstoffe bis hin zu den verschiedenen "End-of-life" Optionen am Ende der Nutzungsdauer.

Name und Anschrift der Deklarierenden

TEPPFA, Avenue de Cortenbergh, 71, B-1000 Brüssel, Belgien, Tel: +32-2-736 24 06, Fax: +32-2-736 58 82, E-Mail: info@teppfa.org, http://www.teppfa.org


Verwendung und funktionelle Einheit des PVC Rohrsystems

Die EPD bezieht sich auf ein typisches europäisches PVC-U Vollwand Kanalrohrsystem mit der Systemgrenze "Wiege bis Bahre". Sie berücksichtigt die Rohstoffgewinnung, die Herstellung der Werkstoffe den Transport der Werkstoffe zum Verarbeiter, den Verarbeitungsprozess, den Transport zur Baustelle, den Einbau und Betrieb sowie das Ende der Nutzungsdauer. Umweltindikatoren werden für den gesamten Lebenszyklus von der Wiege bis zur Bahre für ein durchschnittliches europäisches PVC-U Vollwand Kanalrohrsystem angegeben.

Die funktionelle Einheit ist definiert als "unterirdische, schwerkraftbasierte Beförderung des Abwassers durch ein typisches europäisches PVC-U Vollwand Kanalrohrsystem (Ø 250 mm) über eine Distanz von 100 Metern, ausgehend vom Eintritt in das Abwassernetz bis zum Eintritt in die Kläranlage über eine gesamte Nutzungsdauer von 100 Jahren, berechnet pro Jahr".

Produktbezeichnung & graphische Darstellung des Produkts

PVC-U Vollwand Kanalrohrsystem für Abwasser

Beschreibung der Komponenten des PVC-U Vollwand Kanalrohrsystems

Die Umweltbelastungen werden für die funktionelle Einheit eines typischen europäischen PVC-U Vollwand Kanalrohrsystems berechnet. Dieses besteht aus den folgenden Basiskomponenten: PVC-U Rohre, PVC-U Formstücke, PP Einsteigschächte und SBR Dichtungsringe.

Das System besteht aus PVC-U Vollwandrohren und Formstücken, rotbraun, SN 4, Durchmesser 250 mm, Länge 5 m, Steckmuffenverbindung (repräsentativ für die typischen Rohrdurchmesser vom Eintritt in das Abwassernetz bis zum Eintritt in die Kläranlage).

Einsteigschächte sind ungefähr alle 45 Meter angeordnet (630 mm Schacht [SMP, 2005]). Die Schachtabdeckungen sind in der Ökobilanz-Studie nicht berücksichtigt. Die Menge an Formstücken inklusive Dichtungen (ungefähr 5%) wird aufgrund der aktuellen Verkaufsdaten berechnet.

Das Rohrsystem hat eine Referenzlänge von 100 Metern, ein Gefälle von 1/200 und eine Füllgrad von 100%. Es wird eine Nutzungsdauer von 100 Jahren angesetzt [TNO, 2008]. Die EPD deklariert die durchschnittliche ökologische Performance für ein typisches europäisches PVC-U Vollwand Abwasserkanalrohrsystem über die gesamte Nutzungsdauer von 100 Jahren, berechnet pro Jahr, in Übereinstimmung mit [EN 1401-1, 2009], [EN 1401-2, 2001], [EN 1295-1,1997] und [EN 1610, 1998].

EPD Programm und Programmhalter

Die vorliegende EPD steht im Einklang mit der laufenden Normierungsarbeit der CEN TC/350 [prEN15804, 2008] und [prEN15942, 2009]. Ein Programmhalter für das CEN TC/350 wurde noch nicht bestimmt.

Zeitpunkt und Gültigkeit der Deklaration

Revision 1, 23. März 2012

Die EPD hat eine Gültigkeitsdauer von fünf Jahren (März 2017).

Vergleichbarkeit

Es ist zu beachten, dass die EPDs von Bauprodukten eventuell nicht vergleichbar sind, wenn sie den CEN TC/350 Normen [prEN15804, 2008] und [prEN15942, 2009] nicht

entsprechen.

Typisches europäisches PVC-U Vollwand Kanalrohrsystem

Die vorliegende EPD beleuchtet die verschiedenen Umweltaspekte, die mit einem repräsentativen durchschnittlichen PVC-U Vollwand Kanalrohrsystem einhergehen, von der primären Rohstoffgewinnung bis hin zu den verschiedenen "End-of-life" Optionen am Ende der Nutzungsdauer nach 100 Jahren.

Gruppe von Herstellern

Die EPD repräsentiert ein typisches europäisches PVC-U Vollwand Kanalrohrsystem. Die Mitgliedsunternehmen der TEPPFA umfassen mehr als 50% des europäischen Marktes der Kunststoffrohrproduktion. Für eine Übersicht über alle Mitglieder und die nationalen Verbände innerhalb der TEPPFA wird auf die letzten Seiten dieser EPD verwiesen.

Inhaltsstoffe des Produktsystems

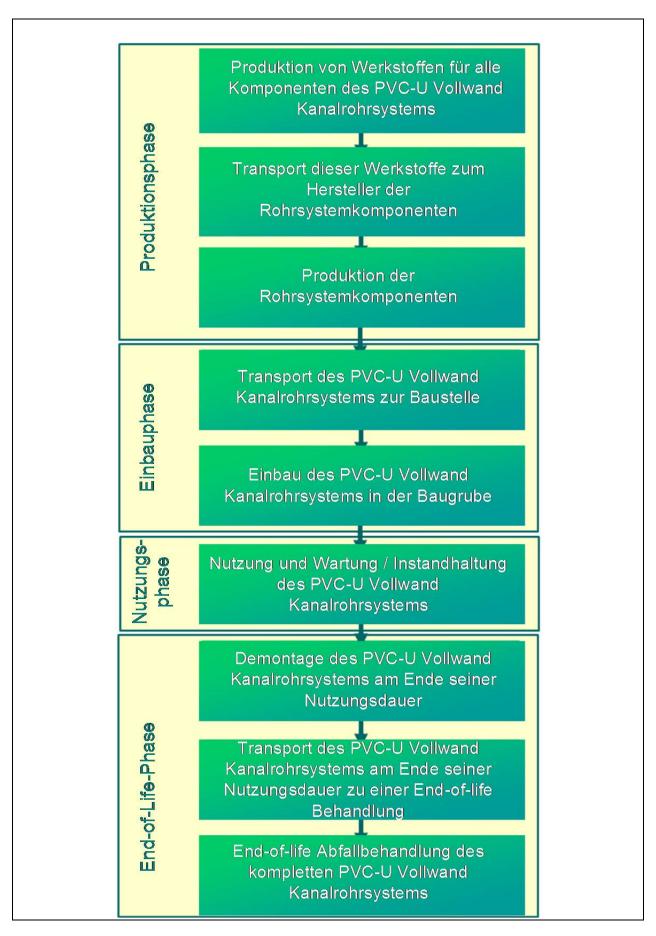
Das deklarierte Produktsystem beinhaltet entlang des gesamten Lebenszyklus keine Materialen oder Substanzen, die einen nachteiligen Effekt auf die menschliche Gesundheit oder die Umwelt haben.

Weiterführende Informationen

Informationsmaterial kann durch Kontaktaufnahme mit der TEPPFA erhalten werden (http://www.teppfa.org).

2 DEKLARATION DER MATERIALEIGENSCHAFTEN

Das europäische Polyvinylchlorid (PVC–U) Vollwand Kanalrohrsystem beinhaltet keine Stoffe als solche oder in Konzentrationen, welche die gesetzlichen Grenzwerte überschreiten oder die einen nachteiligen Effekt auf die menschliche Gesundheit und die Umwelt haben, in jeder Phase des gesamten Lebenszyklus.


3 DEKLARATION DER AUS DER ÖKOBILANZ ABGELEI-TETEN UMWELTPARAMETER

3.1 Darstellung der Lebenszyklusphasen

Die EPD bezieht sich auf ein typisches europäisches PVC-U Vollwand Kanalrohrsystem von der Wiege bis zur Bahre, inklusive Produktionsphase, Transport zur Baustelle und Einbau-, Nutzungs- und "End-of-Life-Phase".

- **Produktionsphase**: umfasst die Rohstoffgewinnung und Verarbeitung, Recyclingprozesse für rezyklierbares Material, den Transport zum Hersteller und die Herstellung selbst (dies beinhaltet jegliche Bereitstellung von Energie, diverse abfallwirtschaftliche Prozesse während der Produktionsphase bis hin zur Deponierung von Produktionsabfällen):
 - Gewinnung der Rohstoffe (Ausgangsstoffe) und Herstellung der Werkstoffe für die Produktion der PVC-U Vollwandrohre
 - Transport der Werkstoffe für die Produktion der PVC-U Vollwandrohre zum Verarbeiter
 - Verarbeitungsprozess (Extrusion der PVC-U Vollwandrohre), einschließlich dem Verpacken der Rohre
 - o Gewinnung der Rohstoffe (Ausgangsstoffe) und Herstellung der Werkstoffe

- für die Produktion der PVC Formstücke
- Transport der Werkstoffe für die Produktion der PVC Formstücke zum Verarbeiter
- Verarbeitungsprozess (Spritzguss der PVC-U Formstücke), einschließlich dem Verpacken der Formstücke
- Gewinnung der Rohstoffe (Ausgangsstoffe) und Herstellung der Werkstoffe für die Produktion der PP Einsteigschächte
- Transport der Werkstoffe für die Produktion der PP Einsteigschächte zum Verarbeiter
- Verarbeitungsprozess (Spritzguss der PP Einsteigschächte), einschließlich dem Verpacken der Einsteigschächte
- Gewinnung der Rohstoffe (Ausgangsstoffe) und Herstellung der Werkstoffe für die Produktion der Dichtungsringe aus SBR
- Transport der Werkstoffe für die Produktion der Dichtungsringe aus SBR zum Verarbeiter
- Verarbeitungsprozess der Dichtungsringe aus SBR einschließlich dem Verpacken der SBR Dichtungsringe
- **Einbauphase**: umfasst Transportprozesse und die Bereitstellung von Energie sowie abfallwirtschaftliche Prozesse bis hin zur Deponierung von anfallenden Abfällen während der Einbauphase:
 - o Transport des PVC-U Vollwand Kanalrohrsystems zur Baustelle
 - o Einbau des PVC-U Vollwand Kanalrohrsystems in der Baugrube
- **Nutzungsphase** (Betriebliche Nutzung und Wartung): umfasst die Bereitstellung von Energie sowie abfallwirtschaftliche Prozesse (bis hin zur Deponierung von anfallenden Abfällen) während der Nutzungsdauer:
 - o die betriebliche Nutzung verursacht keine relevanten Umweltwirkungen
 - die Wartung des Abwasserkanalrohrsystems, bestehend aus PVC-U Vollwandrohren, während einer 100-jährigen Nutzungsdauer in der Baugrube
- **End-of-Life-Phase**: umfasst Transportprozesse und die Bereitstellung von Energie während der Entsorgungsphase:
 - Ausbau des aus PVC-U Vollwandrohren bestehenden Kanalrohrsystems nach einer 100-jährigen Nutzungsdauer aus der Baugrube
 - Transport des PVC-U Kanalrohrsystems nach einer 100-jährigen Nutzungsdauer zu einer abfallwirtschaftlichen Behandlung
 - o Abfallwirtschaftliche Behandlung des PVC-U Kanalrohrsystems (Verwertung/Entsorgung) nach einer 100-jährigen Nutzungsdauer

3.2 Parameter zur Beschreibung der Umweltauswirkungen

Die folgenden Umweltparameter werden über die Wirkungskategorien gemäß Ökobilanz (*Life cycle impact assessment (LCIA*)) ausgedrückt.

Wirkungskategorie	Abiotischer Abbau	Versauerung	Überdüngung	Globale Erwärmung	Abbau der Ozonschicht	Sommersmog
	kg Sb Äqu.	kg SO₂ Äqu.	kg PO₄-– Äqu.	kg CO ₂ Äqu.	kg CFC-11 Äqu.	kg C₂H₄ Äqu.
Produktionsphase	0,21624	0,05801	0,01642	18,75939	0,0000003	0,00329
Einbauphase	0,05023	0,04606	0,01179	7,25482	0,0000009	0,00141
Nutzungsphase	0,00380	0,00408	0,00098	0,55092	0,000001	0,00011
End-of-Life-Phase	0,00011	0,00017	-0,00014	0,31245	0,0000001	0,000005
Total	0,27037	0,10833	0,02905	26,87759	0,0000013	0,00482

3.3 Parameter zur Beschreibung des Ressourceneinsatzes

Umweltparameter basieren auf Daten aus der Sachbilanz (Life cycle inventory (LCI)).

Sachbilanzgröße	Nicht erneuerbarer Energie	Erneuerbarer Energie	Nicht erneuerbare Material- ressourcen (außer Energie)	Erneuerbare Material- ressourcen (außer Energie)	Rohöl (Rohstoff und Energie)	Erdgas (Rohstoff und Energie)	Wasser- verbrauch
	MJ primär	MJ primär	kg	kg	kg	kg	m³
Produktionsphase	560,15861	20,42549	0,08986	0,49115	4,57972	3,97667	25,44626
Einbauphase	123,31843	3,28218	0,25701	0,01874	2,00592	0,20115	18,76305
Nutzungsphase	8,60018	0,05974	0,01668	0,00065	0,15806	0,01387	0,39644
End-of-Life-Phase	-0,00728	-0,13211	0,00253	-0,00238	0,03097	-0,00466	-0,42099
Total	692,06993	23,63529	0,36608	0,50816	6,77467	4,18703	44,18475

3.4 Parameter zur Beschreibung verschiedener Abfallkategorien und anderer Outputströme

Die Parameter beschreiben Abfallkategorien und andere Outputströme, die aus der Sachbilanz abgeleitet sind.

Folgende Parameter beschreiben verschiedene Abfallkategorien

Sachbilanzgröße	Gefährliche Abfälle	Nicht gefährliche Abfälle	Atomare Abfälle
5	kg	kg	kg
Produktionsphase	0,08086	0,51388	0,00035
Einbauphase	0,00011	0,94584	0,00019
Nutzungsphase	0,00001	0,01365	0,000003
End-of-Life-Phase	0	8,42485	-0,000009
Total	0,08097	9,89821	0,00053

Folgende Parameter beschreiben weitere Outputströme

Parameter	Parameter-Einheit je funktioneller Einheit		
Materialien für die Wiederverwendung	8,063 kg		
Materialien für das Recycling	0,219 kg		
Materialien für Energierückgewinnung	0,233 kg		

4 SZENARIEN UND TECHNISCHE INFORMATIONEN

4.1 Einbauphase

Transport vom Produktionsort zur Baustelle (Baugrube)

Parameter	Parameter-Einheit je funktioneller Einheit			
Kraftstoffverbrauch eines Fahrzeugs oder eines Fahrzeugtyps, das/der für den Transport verwendet wird, z. B. Fernlastwagen, Schiff usw.	Das PVC-U Vollwand Kanalrohrsystem wird über eine durchschnittliche Distanz von 460 km mittels eines LKWs vom Hersteller der unterschiedlichen Rohrsystemkomponenten zur Baustelle transportiert. Die durchschnittliche Ladekapazität beträgt 26 % bei einer durchschnittlichen Beladung von 7 Tonnen. Der Ladefaktor ist bei PVC-U Rohren durch das			
Kapazitätsauslastung (einschließlich leerer Rückfahrten)				
Schüttdichte				
Auslastungsfaktor für die räumliche Kapazität (Faktor: = 1 bzw. <1 oder ≥ 1 für komprimiert oder verschachtelt verpackte Produkte)	Volumen limitiert. Durch diese Art von Transport hervorgerufene Umweltbelastungen werden mit dem Ecoinvent V2.2 Datensatz "Transport, LKW 16-32t, EURO4, tkm, RER" berechnet [Ecoinvent, 2010].			

Installation (Einbau in der Baugrube)

Parameter	Parameter-Einheit je funktioneller Einheit			
Hilfsmaterialien für den Einbau	0,31 m³ Sand werden zur Einbettung über eine durchschnittliche Entfernung von 10 km per LKW zur Baustelle transportiert.			
	Durch diese Art von Input hervorgerufene Umweltbelastungen werden mit dem Ecoinvent V2.2 Datensatz "Sand, ab Abbau, kg, CH" + "Transport, LKW >32t, EURO4, tkm, RER" berechnet [Ecoinvent, 2010].			
Andere verbrauchte Ressourcen	Nicht zutreffend.			
Quantitative Beschreibung des Energietyps (regionaler Mix) und des Verbrauchs während der Einbauphase	44,5 MJ mechanischer Energie sind für den Aushub des Bodens, für das Einbringen der Erde und des Sands zur Einbettung, für den Rüttelverdichter (Verdichtung der Einbettung) und für die Vibrationsplatte (Verdichtung an der			

	Oberfläche) nö hervorgerufene dem Ecoinvent Baumaschine, 2010].	Umweltbe V2.2 Date	elastungen w nsatz "Diesel	erden mit , in
Anfallende Abfälle auf der Baustelle, die durch den Rohreinbau erzeugt werden. Aus der abfallwirtschaftlichen Tätigkeit auf der Baustelle resultierende Outputmaterialien z.B. durch die Sammlung für das Recycling, die energetische Verwertung bzw. die Entsorgung	verbrannt un rezykliert. Tra zur abfallwirtsc sichtigt und b zur Recycling brennungsanla 50 km zur E Zusammenhandem Ecoinvent	erden dep nd 5 % nsporte vo chaftlichen etragen im g-Anlage, ge mit Ene Deponie. g mit dem t V2.2 Date RO4, tkr 10]. ckungsabf europäisch erpackungs 6]: Recycling 27% 75% 38% 66% 57% en fällt bein nschnittlich genen Deponien in Zusten mit den nsport, LKN	werden won PVC-U R Anlage werden 150 km rgierückgewin Umweltbelas Transport vensatz "Trans m, RER" älle fallen ar nem Durchsc abfälle behan Energierück- gewinnung 28% 10% 23% 12% n Aushub an e Entfernung onie transport sammenhang n Ecoinvent vensaty W 3,5-7.5t, E	werder werder werkstofflick ohrabfäller en berück itt 600 km zur Verinnung und tungen in werden misport, LKV berechner und hnitts-hadelt Deponie 47% 15% 39% 34% 31% und wird yvon 5 km tiert. g mit dem V2.2 EURO4,
Emissionen in die Umgebungsluft, in den Boden und in das Wasser	Keine direkten Die Emissionen (Gewinnung vo mechanische E	der vorge n Sand-, T	lagerten Proz ransport-Pro vie nachgela	zesse zesse und

4.2 Nutzungsphase: Betriebliche Nutzung und Wartung bzw. Instandhaltung

Betriebliche Nutzung:

Die betriebliche Nutzung ist für die EPD nicht relevant, da sie keine nennenswerten Umweltwirkungen verursacht. Außerdem ist das PVC-U Vollwand Kanalrohrsystem ein

Prozesse (Abfallwirtschaft) sind in den Ecoinvent Datensätzen enthalten, die für die Modellierung der Umweltauswirkungen eingesetzt werden. Schwerkraft basiertes Rohrsystem.

Wartung bzw. Instandhaltung:

Energieverbrauch für das Spülen: 5,4 kWh je funktioneller Einheit Wasserverbrauch für das Spülen: 0,12 m³ je funktioneller Einheit

Die Wartung des PVC-U Vollwand Kanalrohrsystems ist auf das Spülen beschränkt.

Innerhalb der Nutzungsdauer von 100 Jahren wird vier Mal gespült.

Ein Spülvorgang benötigt 4 Liter Kraftstoff und 3 m³ Wasser je 100 Meter Rohrlänge.

4.3 End-of-Life

Die folgenden "End-of-Life Szenarien" werden berücksichtigt:

- Geschätzte Nutzungsdauer von 100 Jahren [TNO, 2008].
- "End of life Ansatz" für Deponierung und Verbrennung mit Energierückgewinnung (Belastungen und Gutschriften werden dem Lebenszyklus zugewiesen, der die Abfallströme erzeugt)
- "Recycled content approach" für Recycling und Verwendung von Recyclingmaterialien (durch die Verwendung von Recyclingmaterial werden weniger Primärmaterialien benötigt, die Auswirkungen von Recycling werden in Form von Belastungen und Gutschriften dem System zugeordnet, das die Rezyklate verwendet)

Parameter	Parameter-Einheit je funktioneller Einheit
Sammlung	Am Ende der Nutzungsdauer wird das PVC-U Vollwand Kanalrohrsystem nach 100 Jahren erneuert. In den meisten
Recycling / Verwertung	Fällen (95 %) wird das Rohrsystem im Untergrund belassen. In einigen Fällen (5 %) wird das Rohrsystem ausgebaut und der Abfallwirtschaft zugeführt (Verbrennung oder Deponierung).
Ablagerung / Deponierung	End-of-Life-Szenario PVC Rohre Mechanisches Recycling 2,5% Verbrennung 2,5% im Boden verbleibend 95%
	Die Transportdistanz hängt von der Art der Behandlung ab. Es wird eine durchschnittliche Transportdistanz von 600 km in eine mechanische Recyclinganlage und von 150 km in eine Verbrennungsanlage angenommen. Umweltbelastungen in Zusammenhang mit dem Transport werden mit dem Ecoinvent V2.2 Datensatz "Transport, LKW 3,5-7.5t, EURO4, tkm, RER" berechnet [Ecoinvent, 2010].

5 ZUSÄTZLICHE INFORMATIONEN ZU EMISSIONEN WÄHREND DER NUTZUNGSPHASE - INNENLUFT, BODEN UND WASSER

Die Innenraumluft betreffende Emissionen:

Da das PVC-U Vollwand Kanalrohrsystem in der Baugrube verlegt ist, kann bestätigt werden, dass die Innenraumluft betreffende Emissionen nicht zutreffend sind.

Boden und Wasser betreffende Emissionen:

Ungeachtet der Tatsache, dass keine europäische Messmethode verfügbar ist, kann bestätigt werden, dass das PVC-U Vollwand Kanalrohrsystem keine Substanzen enthält, die in der REACH-Liste angeführt sind.

6 SONSTIGE ZUSÄTZLICHE INFORMATIONEN

Zertifizierung, Konformität und Kennzeichnung des Produkts

EN 1401-1:2009, Kunststoff-Rohrleitungssysteme für erdverlegte drucklose Abwasserkanäle und -leitungen - Weichmacherfreies Polyvinylchlorid (PVC-U) - Teil 1: Anforderungen an Rohre, Formstücke und das Rohrleitungssystem

ENV 1401-2:2000, Kunststoff-Rohrleitungssysteme für erdverlegte drucklose Abwasserkanäle und -leitungen - Weichmacherfreies Polyvinylchlorid (PVC-U) - Teil 2: Beurteilung der Konformität

EN 1295-1:1998, Statische Berechnung von erdverlegten Rohrleitungen unter verschiedenen Belastungsbedingungen - Teil 1: Allgemeine Anforderungen

EN 1610:1997, Verlegung und Prüfung von Abwasserleitungen und -kanälen

ENV 1046:2002, Kunststoff-Rohrleitungs- und Schutzrohr-Systeme - Systeme außerhalb der Gebäudestruktur zum Transport von Wasser oder Abwasser - Verfahren zur ober- und unterirdischen Verlegung

In Übereinstimmung mit der Europäischen Direktive für Bauprodukte (89/106/EWG)

Sonstige technische Produktperformance

Der gesamte Überblick über den Umweltnutzen der Kunststoffrohrsysteme kann der TEPPFA website entnommen werden: http://www.teppfa.org

TEPPFA Mitgliedsunternehmen OAliaxis Aliaxis ALPHACAN / Alphacan **EGEPLAST Geberit International** GEBERIT **Georg Fischer Piping Systems** GEORG FISCHER PIPING SYSTEMS **KWH Pipe** *Pipe*Life **Pipelife International** Rehau **Teraplast Teraplast Tessenderlo Group** uponor Uponor Wavin (wavin

TEPPFA Nationale Verbandsmitglieder

ADPP - Czech Republic plastic pipes association

ASETUB - Asociación Española de Fabricantes de Tubos y

Accesorios Plásticos

BPF - Plastic Pipes Group

BPPMA - Bulgarian Plastic Pipes Manufacturers Association

BureauLeiding - Dutch Plastic Pipes Association

DPF - Danish Plastics Federation

FCIO - Fachverband der Chemischen Industrie Österreich

Federplast.be - Belgische Vereniging van Producenten van

Kunststof- en Rubberartikelen bij Agoria en

FIPIF - Finnish Plastics Industries Federation

- Irish Plastic Pipe Manufacturers Association

KRV - Kunstoffrohrverband e.V.- Fachverband der

Kunstoffrohr-Industrie

MCsSz - Műanyag Csőgyártók Szövetsége

P&K - Swedish Plastics and Chemical Federation

PRIK - Polish Association of Pipes and Fittings

STR - Syndicat des Tubes et Raccords

VKR - Verband Kunststoffrohre und Rohrleitungstelle

REFERENZEN

- Ecoinvent (2010): Ecoinvent Datenbank, v2.2, 2010, Swiss Centre for Life Cycle Inventories, Schweiz
- EN 1401-1:2009, Kunststoff-Rohrleitungssysteme für erdverlegte drucklose Abwasserkanäle und leitungen Weichmacherfreies Polyvinylchlorid (PVC-U) Teil 1: Anforderungen an Rohre, Formstücke und das Rohrleitungssystem
- ENV 1401-2:2000, Kunststoff-Rohrleitungssysteme für erdverlegte drucklose Abwasserkanäle und leitungen Weichmacherfreies Polyvinylchlorid (PVC-U) Teil 2: Beurteilung der Konformität
- EN 1295-1:1998, Statische Berechnung von erdverlegten Rohrleitungen unter verschiedenen Belastungsbedingungen Teil 1: Allgemeine Anforderungen
- EN 1610:1997, Verlegung und Prüfung von Abwasserleitungen und -kanälen
- ENV 1046:2002, Kunststoff-Rohrleitungs- und Schutzrohr-Systeme Systeme außerhalb der Gebäudestruktur zum Transport von Wasser oder Abwasser Verfahren zur ober- und unterirdischen Verlegung
- Eurostat (2006): Packaging waste scenarios
- ISO 14025:2006, Umweltkennzeichnungen und -deklarationen Typ III Umweltdeklarationen Grundsätze und Verfahren
- ISO 14040:2006, Umweltmanagement Ökobilanz Grundsätze und Rahmenbedingungen
- ISO 14044:2006, Umweltmanagement Ökobilanz Anforderungen und Anleitungen
- prEN 15804:2008; Nachhaltigkeit von Bauwerken Umweltdeklarationen für Produkte Grundegeln für Produktkategorie Bauprodukte
- prEN 15942:2009, Nachhaltigkeit von Bauwerken Umweltdeklarationen Kommunikationsformate zwischen Unternehmen
- SMP (2005): European study of the performance of various pipe systems, respectively pipe materials for municipal sewage systems under special consideration of the ecological range of effects during the service life; SMP report Prof. Dr.-Ing. Stein & Partner GmbH Bochum
- TNO (2008): Quality of PVC sewage pipes in the Netherlands; TNO report, MT-RAP-2008-01066/mso / 2 / April 2, 2008 Autor J. Breen Assignor BureauLeiding

Hintergrundbericht zur Ökobilanz gemäß [ISO 14040, 2006] und [ISO 14044, 2006] wurde angefertigt von

VITO – Flämisches Institut für technologische Forschung, Boeretang 200, B-2400 Mol, Belgien, Tel.: +32-14-33 55 11, Email: vito@vito.be

Externe kritische Prüfung der zugrunde liegenden Ökobilanz wurde durchgeführt von

denkstatt GmbH, Hietzinger Hauptstraße 28, A-1130 Wien, Österreich, Tel.: +43-1 786 89 00, Email: office@denkstatt.at

